Trivial Numerical Integration

MJR

February 2014

There follows a discussion of the numerical integration of a Gaussian over a semi-infinite interval. The integrands chosen are

$$
\exp \left(-x^{2} / \sigma^{2}\right) \text { and } \exp \left(-x^{2} / \sigma^{2}\right)+10^{-6}
$$

with $\sigma \leq 1$. The range is zero to 100 , which, for any reasonable precision, is equivalant to zero to infinity.

This integrations are evaluated a number of times. After each evaluation, σ is halved. The analytic results are effectively $0.5 \sigma \sqrt{\pi}$, and the same plus 10^{-4}.

The difficulty for numerical integration is although the exponential is non-zero at one end-point (it is one at the origin), for small σ it decays quite rapidly to zero. Integrators tend not to sample the end point, so may end up sampling exclusively at points where the exponential is zero (less than smallest non-zero representable number). In this case the integrator will falsely conclude that the result is zero for the first integrand, and 10^{-4} for the second, and that there is no interesting region in which a higher sampling rate is necessary.

The default integration routines from GSL, NAG, Matlab and Mathematica were used, and the results and codes are discussed below.

1 Results

1.1 First Integrand

NAG (d01ahf) incorrectly gave zero as the answer for $\sigma=0.0625$ and below. It gave no warning. NAG (d01ajf) did better, incorrectly giving zero for $\sigma=$ 0.015625 and below. The documentation for d01ahf states 'an attempt is made to detect sharp end point peaks and singularities...'

GSL (gsl_integration_qag with GSL_INTEG_GAUSS15) incorrectly gave zero as the answer for $\sigma=0.015625$ and below. It gave no warning.

Mathematica (NIntegrate) incorrectly gave zero as the answer for $\sigma=0.015625$ and below. It did give a warning that the integral and error estimates were all zero.

Matlab (quadgk) gave incorrect, tiny, non-zero answers for $\sigma=7.62939 e-06$ and $3.8147 e-06$, followed by zero for smaller σ. It gave no warning.

1.2 Second Integrand

NAG (d01ahf) gives incorrect answers (i.e. 10^{-4}) for $\sigma=0.25$ and below, and NAG (d01ajf) remains as good as GSL.

GSL gives incorrect answers for $\sigma=0.0625$ and below.
With $\sigma=0.125$ and below, Mathematica believes that this integrates to 0.0001 . The correct answer is just over 0.11 . No warnings are given.

Matlab is still correct until σ reaches $7.62939 e-06$.
Octave 3.6 gives similar results to Matlab for both integrals.

2 Conclusions

In all cases wrong answers with no warnings were readily triggered.
Assuming the integrator first attempts a 7 point Gauss rule with a 15 point Kronrod rule, and compares the answers, the closest point to the origin sampled will be approximately 0.42725 . For the first integral, there will be confusion if the integrand evaluates to zero here, which is approximately the condition that

$$
\begin{aligned}
\exp \left(-x^{2} / \sigma^{2}\right) & <10^{-310} \\
-x^{2} / \sigma^{2} & <-714 \\
x / \sigma & >26.7 \\
\sigma & <0.016
\end{aligned}
$$

For the second integral, confusion would occur if the integrand does not evaluate to something distinguishable from 10^{-6}, which is approximately

$$
\begin{aligned}
\exp \left(-x^{2} / \sigma^{2}\right) & <10^{-21} \\
\sigma & <0.061
\end{aligned}
$$

This reflects what GSL seems to do. NAG seems worse, and Matlab remarkably good. None is perfect though.

3 Programs

3.1 NAG

```
module const
    double precision :: sigma
    contains
    function gauss(x)
        double precision gauss
        double precision, intent(in):: x
        gauss=exp(-x*x/(sigma*sigma))
        return
    end function
end module
program integrate
    use const
    use nag_library
    integer i,ifail,npts
    double precision x,err,pi
    pi=3.14159265358979d0
    sigma=1
    ifail=0
    do i=1,10
        x=d01ahf(0d0,100d0,1d-8,npts, err,gauss, 100000,ifail)
        write(*,*)'sigma=',sigma
        write(*,*)'integral=',x,'err=',err*x,'ifail=',ifail
        write(*,*)'actual error',abs(x-0.5*sigma*sqrt(pi))
        sigma=sigma*0.5
    enddo
end
```


3.2 GSL

```
/* Compile with
    gcc -I/usr/include/gsl int_gsl.c -lgsl -lgslcblas
*/
#include<stdio.h>
#include<math.h>
#include<gsl/gsl_errno.h>
#include<gsl_roots.h>
#include<gsl/gsl_integration.h>
double sigma;
double gauss(double x, void *p){
    return exp(-x*x/(sigma*sigma));
}
int main(){
    int i;
    double x,err,p,pi=3.14159265358979;
    int n;
    gsl_integration_workspace *work;
    gsl_function F;
    work=gsl_integration_workspace_alloc(100000);
    F.function=gauss;
    F.params=NULL;
    gsl_set_error_handler_off();
    sigma=1;
    for(i=0;i<10;i++){
        gsl_integration_qag(&F,0,100,0,1e-8,100000,GSL_INTEG_GAUSS15,
                    work,&x,&err);
        printf("sigma=%g\n integral=%g claimed error %g actual error %g\n",
                    sigma,x,err,fabs(x-0.5*sigma*sqrt(pi)));
        sigma*=0.5;
    }
    gsl_integration_workspace_free(work);
    return 0;
}
```


3.3 Matlab

```
sigma=1;
for i=1:20
    gauss=@(x) exp(-(x*x)/(sigma*sigma));
    x=quadgk(@ (xx) arrayfun(gauss,xx),0,100,'AbsTol', eps, ...
                    'MaxIntervalCount', 100000);
    fprintf('sigma=%g\n integral=%g claimed error %g actual error %g\n', ...
                sigma,x,eps,abs(x-0.5*sigma*sqrt(pi)));
    sigma=0.5*sigma;
end
```


3.4 Mathematica

sigma $=1$; Do $[y=N I n t e g r a t e[\operatorname{Exp}[-x * x /($ sigma*sigma)], \{x, 0, 100\}];
Print [sigma, " ", y]; Print [Abs[y - 0.5*sigma*N[Sqrt[Pi]]]];
sigma $=0.5 *$ sigma, $\{i, 10\}]$

