
Fortran 95

Dr MJ Rutter
mjr19@cam.ac.uk

Michaelmas 2001

Typeset by FoilTEX c©2001 MJ Rutter

What are (Computer) Languages?

A useful computer language is:

• ‘easy’ for a human to understand

• ‘easy’ for a compiler to convert to the obscure
machine instructions and OS calls that the computer
understands – a process called ‘compilation’.

Of course one may argue about what the word ‘easy’ above means.

1

Portability

It should not be necessary to rewrite programs merely
because one wishes to run them on a different type of
computer or on a different operating system.

A mere recompilation should be sufficient.

A language with a well-defined and well-supported
standard tends to achieve this ideal (e.g. F90, C,
Java). A program written in a language without a
widely accepted standard (e.g. BASIC) often requires a
major rewrite in order to use it on a different computer.

2

FORmula TRANslation

Fortran is a venerable language designed to translate
scientific formulae into a form usable by computers. It
was not designed as a general-purpose language.

Fortran was originally developed by IBM in the late
1950’s. The first official standard was published by
ANSI in 1966, followed by significant revisions in 1977.
The next standard, published in 1990, represented
a more dramatic change, and that published in
1995 a very minor set of changes. The relevant
standards committee still exists, and further revisions
are expected.

ANSI: American National Standards Institute.

C is also quite an old language. So-called K&R C was developed in Bell Labs in the early
1970s, and was launched on the world in 1978, with the first ANSI standard published in 1989,
thus creating ANSI C.

3

Fortran Today

Fortran may be nearing fifty years old, but it is far from
dead!

Most large numerical codes are still written in Fortran:
examples include most weather forecasting programs,
many ‘numerical wind-tunnels’ and most quantum
mechanical electronic structure codes. Thus the
majority of the CPU time of big supercomputers, both
national supercomputers and those in Cambridge, is
spent running Fortran.

Not being a general-purpose language, there are some things Fortran is very bad at. Anyone
trying to write a compiler or operating system in Fortran is probably mad or about to become
mad. However the ‘old’ University Library electronic catalogue, which is soon to be replaced,
is written in Fortran, even though this is far from the sort of application for which Fortran was
designed.

Fortran’s historic advantage is its simplicity: easy for humans to learn, easy for compilers
to translate into the optimal sequence of instructions for a computer to execute. On some
machines (such as vector Crays from the early to mid 1990s), the same algorithm written in
Fortran and C would typically run ten to twenty times faster when written in Fortran.

4

Hello

$ less hello.f90
write(*,*) ’Hello, world.’
end
$ f95 -o hello hello.f90
$./hello
Hello, world.
$

First one must create the above two-line program using an editor.

The program consists of statements, one per line. The first writes a message back to the
screen, the second, end, finishes each and every Fortran program.

The UNIX less command shows us the contents of the text file we have created: press ‘q’ to
exit.

The UNIX f95 command compiles that file, assuming it is valid Fortran. We have asked it
to name the resulting binary program, which we will be able to run, ‘hello’. Omitting ‘-o
hello’ would result in the default name of ‘a.out’ being used.

The UNIX command ./hello runs this new program we have just created. The initial ‘./’
indicates that this is not a pre-installed system program, but something to be found in our
current directory.

Although print* can be used as a synonym for write(*,*), the more general form will be
used throughout these notes.

5

Variables

A variable is simply a label for an area of memory
reserved for storing some data.

integer i
i=3
write(*,*) ’i is ’,i
i=i+i
write(*,*) ’i is ’,i
end

Here we start by choosing to use ‘i’ as the label to refer to an area of memory in which a
single integer value can be stored.

The next line stores the value 3 in this location.

The following line prints out i. Notice that ‘write(*,*)’ happily accepts a comma-separated
list of things to print out.

The next line appears to be mathematical nonsense, but = should be interpreted as meaning
assignment not equality. Thus the line calculates i + i, and stores the answer back into the
original location that i occupied. The old value of i is overwritten.

The final two lines should need no explanation.

6

More variables

We may define as many variables as needed. Their
names can be up to 31 characters long, the first must
be alphabetic, the others alphanumeric or underscore.

Unlike UNIX, Fortran is not case-sensitive. In a Fortran
program, ‘small’, ‘SMALL’ and ‘Small’ are considered
equivalent. Inconsistency will confuse humans though.

The operators +,-,*,/ and ** are available, the last
being exponentiation.

integer small, smaller
small=3
smaller=2
write(*,*)small-smaller, small/2
small=smaller
smaller=small
write(*,*)smaller
end

This program prints 1 twice, then 2. Note that 3/2 is 1: so far we have met only integers.
Also, the two assignments near the end do not swap the contents of small and smaller:
indeed, the antepenultimate line is utterly pointless here.

7

Interacting

Examples always appear a little pointless until they
perform something slightly non-trivial. Thus a way of
getting a program to prompt for input is introduced at
this early stage:

real a,b,c,x,y
write(*,*) ’Please input coeffs of quadratic’
read(*,*) a,b,c
x=(sqrt(b*b-4*a*c))/(2*a)
y=-b/(2*a)
write(*,*)’Roots are ’,y-x,’ and ’,y+x
end

real defines a variable to be floating point, rather than integer.

read(*,*) reads a list of values from the keyboard. The values read can be separated by
spaces or be on separate lines, but not separated by commas.

b*b-4*a*c is equivalent to (b*b)-(4*a*c), just like normal algebra. It is not (b*b-4)*a*c.

The sqrt function calculates the square root of its argument.

8

Less Variable

Occasionally it is useful to define a variable in such a
way that it cannot be changed when the program runs.
Such a variable is called a parameter, and everything
about it can be determined when the program is
compiled.

real pi
parameter (pi=3.141593)

Here pi can be used like any other variable, except
that any attempt to change its value will result in an
error.

N.B. All declarations and parameter statements must
precede the executable lines of a program.

9

Conditional execution

The above program has many deficiencies, one of which
becomes apparent if it is given the input ‘1 0 1’.

This can be solved by adding the following lines
immediately after the read:

if ((b*b-4*a*c)<0) then
write(*,*)’No real roots’
stop

endif

The lines between the if and endif are executed only
if the condition on the if line is true. The stop
instruction will terminate the program.

Humans enjoy seeing parts of the code indented in order to emphasis the structure, as above.

Computers don’t care, and will not check that the indenting is consistent with the meaning.

10

More Conditions

Fortran has the ‘standard’ set of comparison operators:
<, <=, ==, >=, > and / = (not equal).

One can also combine the results of comparisons using
the operators .and., .or. and .neqv. (xor).

if ((a==0).and.(b==0).and.(c==0)) then

might be useful. As might

if (a<0) then
write(*,*)’Quadratic has a maximum’

else
write(*,*)’Quadratic has a minimum’

endif

The above errs for a = 0.

N.B. = is assignment, == is equality test.

11

More Control

So far all the examples have shown programs executing
line by line from the first line to the last, maybe skipping
some lines when if is used. One very useful addition
to this model is that of repeated execution: looping.

integer i
do i=1,20
write(*,*)i,i*i,i**3

enddo
end

The code between the do and enddo is executed twenty times, with the variable i being set to
each of the values from 1 to 20 in turn for each iteration of the loop. The output looks like:

1 1 1
2 4 8
3 9 27
4 16 64
.

12

Neatness

The output of the above program does not fall into
the neat columns that one might hope for. This can
be improved by using a format statement to tell the
write statement precisely what to do.

integer i
do i=1,20
write(*,10)i,i*i,i**3

enddo
10 format(i4,i6,i8)

end

The second * of the write statement has beeen replaced by a 10. This tells the compiler not
to guess what layout is required, but rather to look for a format statement somewhere in the
program and labelled by a 10. This statement then says: one integer, padded to a width of
four characters, ditto six, ditto eight.

The format statement may occur before or after the write. Many writes may refer to the
same format statement. The format statement is completely ignored at the point when it
would be due for execution. The label can be any integer of five or fewer digits.

The complete list of options for format is large.

13

Infinite loops

integer i

do
write(*,*)’How many burgers, sir?’
read(*,*)i
write(*,*)’Have a nice day!’

enddo
end

This is bad practice: there ought to be some way of
stopping a program. Adding

if (i==-1) exit

to the loop after the read would achieve this.

exit causes the program to jump to the statement following the current loop, whether the
loop is infinite or finite.

14

Factorisation

integer i,p,sqrt_p
write(*,*)’Input no. to test’
read(*,*)p
sqrt_p=sqrt(real(p))
do i=2,sqrt_p
if (mod(p,i)==0) then
write(*,*)p,’ is divisible by ’,i
stop

endif
enddo
write(*,*)p,’ is prime’
end

mod(a,b) calculates the remainder after dividing a by b

As sqrt does not accept integer arguments, the function real, which converts integers to
reals, is called first.

The above algorithm is not optimally fast!

15

Faster Factorisation

integer i,p,sqrt_p
write(*,*)’Input no. to test’
read(*,*)p

if (mod(p,2)==0) then
write(*,*)p,’ is divisible by 2’
stop

endif

sqrt_p=sqrt(real(p))
do i=3,sqrt_p,2
if (mod(p,i)==0) then
write(*,*)p,’ is divisible by ’,i
stop

endif
enddo
write(*,*)p,’ is prime’
end

The full syntax of a do statement is do i=start,end,step, where the ‘,step’ is optional. If
given, it specifies how much to add to i between each iteration of the loop. The final iteration
will be the last one which does not cause i to exceed end.

16

The structure of a simple program

• declarations of variables & parameters

• executable statements

• the end statement

Comments (read by humans, ignored by computers)
can be added by placing a ‘!’ on a line. Everything
after the exclamation mark will be ignored by the
compiler.

A long statement can be split across two physical lines
by placing a ‘&’ as the last character of the first line:

write(*,*) &
’A somewhat wordy greeting to you all’
end

17

Terminology

Operator: +, −, ∗, /, ∗∗
Constant: data whose value is known at compile time
Variable: data whose value may change during

program execution
Function: sqrt, cos, sin, etc.

Expression: mathematically valid combination of the
above

Argument: expression on which function acts
Declaration: reservation of memory for a variable

Rather informal definitions. As examples:

real a,b,c ! declarations
parameter (c=5.0) ! c is a real constant, as is 5.0

b=sqrt(c) ! c is the argument of the function sqrt
! brackets are required around arguments

a=sqrt(0.4*c) ! 0.4 and c are real constants, * is an operator
! 0.4*c is a real constant expression (=2.0)

a=a/b ! a/b is a real variable expression
a=a**2 ! 2 is an integer constant, a**2 a real variable expression
...

18

Data Types

So far we have seen integers and reals as data types.

Integers have a range of about ±2× 109.

Reals have a range of about ±1.7× 1038 and about 7
decimal digits of precision.

However, another type of real exists with a range
of about ±9 × 10307 and about 14 decimal digits of
precision. This is far more useful.

There is also a type called complex for dealing with
complex numbers (stored simply as two reals: real part
and imaginary part).

Compilers may offer more than the above two precision
of reals.

The above assumes standard IEEE-754 data types. Almost every computer uses these. Elderly
Crays and IBM mainframes might not, PCs do.

19

Constants

A constant is simply a number occuring directly in the
program:

i=i+3

i is a variable, and 3 a constant.

The type of a constant is integer, unless it contains a
decimal point or an exponent, when it is real.

Exponents can be specified as 1.3E12 meaning 1.3 ×
1012.

Using a D rather than an E for the exponent causes
the constant to be double precision, that is, enjoy the
larger of the above ranges. Hence 5E50 is (probably)
an error, whereas 5D50 is fine.

20

What’s your kind?

One can enquire about the kind of a real number, and
define another variable to be of a suitable precision:

integer r12
parameter (r12=selected_real_kind(12))
real (r12) :: x,y

The integer parameter r12 is given the value the the compiler uses to distinguish its sort of
real that has at least 12 decimal digits of precision. The variables x and y are declared to be
one of these. The double colons are required to separate the variables declared from the list
things modifying the real.

integer dp
parameter (dp=kind(1d0))
real (dp) :: x,y

In a similar fashion, here x and y are each declared to be of the same kind of real as 1d0, i.e.
double precision.

N.B. I did not invent this syntax.

21

The Difference

integer ix,iy,dp
real rx,ry
parameter(dp=kind(1.0d0))
real (dp) :: dx,dy

ix=5 ; rx=5 ; dx=5
iy=3 ; ry=3 ; dy=3

write(*,*)ix/iy
write(*,*)rx/ry
write(*,*)dx/dy
end

The output from compiling and running the above is:

1
1.6666666
1.6666666666666667

A semicolon can separate statements, just as using separate lines does.

22

Complex

The complex type is fully supported, and all the
standard functions can take complex arguments and
return complex values. It has different kinds in the
same way that real does.

integer dp
parameter(dp=kind(1.0d0))
complex c
complex (dp) :: dc

c=-2 ; dc=-2
c=sqrt(c) ; dc=sqrt(dc)

write(*,*)c
write(*,*)dc
write(*,*)dc-c
end

Other functions supporting the complex type include: sin, cos, tan, asin, acos, atan,
log, exp and others.

23

Conversions

Conversions between different types and kinds occur
automatically at the last possible moment.

integer i,j
real a,b,c
i=2 ; j=3

a=i ! a is 2.0
b=i/j ! b is 0.0
c=real(i)/j ! c is 0.66..
...

The operators +, -, * and / all convert their operands to the same type and kind before
carrying out the operation. The type and kind of the answer is the type and kind of the
converted operands. The conversion always involves promotion, i.e. movement to the right in
the sequence integer, real, complex and also in the sequence single precision, double precision.

An assignment will convert the type and kind of the right hand side to that of the left
immediately before the assignment is done. Promotion or demotion may occur.

Most built-in functions (sqrt, trig functions) return the same type and kind as their argument,
and do not accept integer arguments.

24

Vagueness

You may discover that programs compile happily
even if none of the variables used are declared.
Simply referencing a variable causes it to be declared
automatically.

This is bad.

Firstly the type may not be what you expect: integer
if the first letter of the variable is in the range i-n, real
otherwise.

Secondly, some common mistakes cannot be spotted
automatically:

real salary, tax
salary=15000
tax=(salary-4000)*0.23
salery=salary-tax
write(*,*) salary
end

25

Being precise

This unhelpful default behaviour can be suppressed by
the use of the statement implicit none. This turns
off the implicit declarations which caused referencing
the misspelt ‘salery’ above not to be an error.

implicit none
real salary, tax
salary=15000
tax=(salary-4000)*0.23
salery=salary-tax
write(*,*) salary
end

Attempts to compile this example will fail.

implicit none must precede any declarations.

26

Arrays

Simple scalar variables do not cover every need in
Physics. Thus there exist arrays: variables containing
multiple scalars.

One dimensional arrays, or vectors, are used as follows:

real position(2)

position(1)=-0.02
position(2)=52.2

and thus the two element one dimensional variable
position stores our latitude and longitude. Similarly

integer marks(150)

could store the marks of a whole class.

27

More dimensions

real v1(3),v2(3),mat(3,3)
...
do i=1,3
v2(i)=0
do j=1,3
v2(i)=v2(i)+v1(j)*mat(i,j)

enddo
enddo

A simple form of matrix-vector multiplication.

Fortran permits up to seven dimensions.

28

Array terminology

integer i,j
real x, mat(100,100)

defines x to be a (scalar) variable and mat to be a two
dimensional array.

mat(i,j) is an element of the array, and i and j are
the array indices or subscripts.

Indices must be integers or integer expressions. mat(2*i,j+7) is quite valid.

The bounds of the array are (1-100,1-100) and any
indices must lie within this range.

Exceeding the bounds of an array is a common error, and is often referred to as ‘falling off the
end’ of the array. A reference to mat(101,100) would be such a mistake. The program will
not necessarily stop at this point. . .

An array element can be used anywhere that a scalar variable is valid.

29

Memory

Clearly real mat(3,3) must take nine times as much
memory as simply real x. Indeed, the matrix will be
laid out in memory simply as mat(1,1), mat(2,1),
mat(3,1), mat(1,2), mat(2,2) ...mat(3,3).

Thus if mat(i,j) is suddenly requested, the computer
knows where mat(1,1) is stored, and adds an offset
of (i-1)+3*(j-1) to find mat(i,j).

Beware! real space(1000,1000,1000) looks
innocent, until one realises that it will require 4GB
of memory (assuming 4 bytes per real).

The indices usually start at one, but this can be
specified:

integer map(-20:20,-20:20)

is a 1681 element two-dimensional array whose indices
range between ±20.

30

Dynamic Arrays

The arrays shown so far are called static, because their
size is specified at compile time. They cannot grow or
shrink.

Dynamically allocated arrays can respond to precise
storage needs at run time.

integer msize
integer, allocatable :: map(:,:)

read(*,*) msize

allocate(map(-msize:msize,-msize:msize))
...
deallocate(map)

This will be similar to the previous snippet if 20 is input.

The program will stop with an error if an allocate fails (e.g. not enough memory).

Notice the use of the colon as a placeholder for the as yet unknown dimension sizes in the
declaration. The keyword ‘allocatable’ defines this to be a dynamic array.

The end statement will automatically deallocate any remaining arrays, though one may do so
explicitly anywhere after the last point at which each array is used.

31

Implicit loops

An array element is just like any other variable, so one
way of copying one array to another would be:

do i=1,n
a(i)=b(i)

enddo

Fortran90 provides an abbreviated syntax for this:

a=b

Similarly

a=b*c

sets a(i)=b(i)*c(i) for the whole array.

This syntax requires a, b and c to be the same length, or for b and/or c to be simple scalar
variables or constants (e.g. a=2*a doubles all the elements of a).

There is no magic here: the execution time will be as long as if the loop were written explicitly.

32

Array Functions

Fortran90 also provides some functions which act
directly on arrays. These include:

sum(a)
∑

a(i)
product(a)

∏
a(i)

dot product(a,b)
∑

a(i)b(i)
maxval(a) value of largest element

maxloc(a) indices of largest element

matmul(a,b) vector or matrix product

and minval and minloc too.

maxval and minval work on multidimensional arrays, and hence maxloc and minloc return
a one dimensional integer array giving the list of indices corresponding to the location. E.g.

integer a(3,3),i(2)
a=1 ; a(2,3)=2
i=maxloc(a)

sets i(1)=2 and i(2)=3.

matmul returns a vector or matrix, and one argument should be a matrix, the other a
vector or matrix of suitable shape that the multiplication is mathematically reasonable. Note
that c=a*b performs element-wise multiplication, cij = aijbij , whereas c=matmul(a,b)

performs standard matrix multiplication cij =
P

aikbkj .

33

Eratosthenes

integer i,j,imax,prime_max
integer, allocatable :: primes(:)

write(*,*)’Input largest number for search’
read(*,*)prime_max
allocate(primes(prime_max))
primes=1 ! Sets all elements of array to 1
imax=sqrt(real(prime_max))

do i=2,imax
do j=2*i,prime_max,i
primes(j)=0

enddo
enddo

do i=2,prime_max
if (primes(i)==1) write(*,*)i

enddo
end

Note the use of a non-unit stride in the loop over j: j takes the values 2*i, 3*i, 4*i. . .

Note the shortened form of the if statement: the then is replaced by a single statement to
execute if the condition is true, and there can be no else section.

34

Random Answers

integer i,trials,hits
real x,y

trials=1000000 ; hits=0

do i=1,trials
call random_number(x)
call random_number(y)
x=2*x-1 ; y=2*y-1
if ((x*x+y*y)<1.0) hits=hits+1

enddo

write(*,*)’pi is approx ’,(4.0*hits)/trials
end

This program calculates π by calculating the area of the unit circle by testing points at random
in the ±1 square.

The built-in subroutine random number sets its argument to a random value in the range
0 ≤ x < 1. If passed an array, it sets all the elements to different random values.

This program will give a different answer each time it is run: try it!

35

Decisions

integer die
real x

call random_number(x)
die=1+6*x

select case (die)
case (1:3)
write(*,*)’Stay in bed’

case (4,5)
write(*,*)’Skip lecture’

case (6)
write(*,*)’Accuse linguist of laziness’

case default ! This should never happen
write(*,*)’Attend lecture’

end select
end

Although the above is possible using if . . . else if . . . else if . . . else . . . endif, the
above construction can look tidier. In the case statement, (a:b) specifies a range, (a,b) two
discrete values, and default what will happen if none of the case conditions matches.

A more practical use of the above would be controlling the motion of a particle performing a
random walk.

36

Factorials

No set of programming examples is complete without
this:

integer i,n,dp
parameter (dp=kind(1.0d0))
real (dp) :: fact

write(*,*)’Please input n’
read(*,*)n

fact=1
do i=2,n
fact=fact*i

enddo

write(*,*)n,’ factorial is ’,fact
end

The double precision real is used for its greater range than integer or real.

37

Extending Fortran

module fact_mod
contains
function factorial(n)
integer i,n
real (kind(1.0d0)) :: factorial
factorial=1
do i=2,n
factorial=factorial*i

enddo
end function

end module

program test
use fact_mod
integer i
write(*,*)’Please input i’
read(*,*) i
write(*,*)i,’ factorial is ’,factorial(i)

end

38

The Details

The program now starts with a module which contains
one function definition.

The function definition is reasonably straightforward.
Notice that here the function is going to return a real
value of kind that of 1.0d0, so the function name
is declared as though it were a variable of that type
and kind, and the value assigned to that variable when
the function ends is the value which the function will
return to the calling program. The type of the function
arguments must also be declared.

The unnecessary but clarifying program statement
marks the start of our program. It immediately specifies
that it wishes to use the module just declared, and
then it calls factorial just as it would any other
FORTRAN function.

Note that the module precedes the program in the source file, and that the module name is
not the same as any variable or function name.

factorial, as defined here, takes an integer argument and returns a real. A function need
not return the same type as its argument(s).

39

The Broader Picture

Variables declared within a function are independent
from any declared elsewhere. In the above example i
is used for different purposes in the main program and
the function.

Thus two different people can write the main program
and the function, and, provided they agree on what
arguments the function takes, and on what it returns,
neither need know anything about the internal details
of the other’s code.

This makes managing largish programs with multiple
programmers possible!

40

Subroutines

A subroutine is very like a function. Consider swap.f90:

module swap_mod
contains
subroutine swap(i,j)
integer i,j,tmp
tmp=i ; i=j ; j=tmp

end subroutine
end module

program swapit
use swap_mod
integer small,smaller
small=3 ; smaller=2
write(*,*) small,smaller
call swap(small,smaller)
write(*,*) small,smaller

end

41

Subroutines in more detail

A subroutine returns no value itself, and has to be called
explicitly with a call statement. It can, however, alter
its arguments.

So can a function, but it is considered very bad practice.

How are the arguments modified? When the above
subroutine was called, it was not passed ‘3’ and ‘2’
directly, but rather the addresses in memory of ‘small’
and ‘smaller’.

Simply the addresses. Not their names.

The subroutine read from these addresses, assuming it
would find integers stored there. And then it wrote
back to those addresses. When the main program
continued, the values stored in the memory locations
it calls ‘small’ and ‘smaller’ had thus changed.

Arguments are passed to functions in the same way.

42

Libraries: the Refuge of the Lazy?

Laziness in programming can be a virtue. Rewriting
an algorithm that someone else has already written
is pointless (unless one does it better). People sell
collections of well-written functions and subroutines in
bundles called libraries.

We have already used libraries implicitly, for the
standard Fortran library includes definitions of the trig
functions amongst other things.

To use extra libraries we must include something in
our program to tell the first phase of the compilation
process to expect to find that something has been left
undefined, and then we must tell the final phase, the
linker, where to find it.

For the NAG library we are to use, this is quite
straightforward.

The NAG library, developed by the Oxford-based Numerical Algorithms Group, is copyrighted
commercial software. The version we shall use was developed for FORTRAN77, so does not
make use of all the features of F90. Most noticeably, its routine names suffer from a seven
character limit, rather than a 31 character limit.

43

Very simple NAG

First a test just to show successfully compiling and
running a program calling NAG.

use nag_f77_a_chapter
write(*,*)’Calling NAG identification routine’
write(*,*)
call a00aaf
end

which should be compiled with

f95 nag_test.f90 -lnag

The output produced by this program is:

Calling NAG identification routine

*** Start of NAG Library implementation details ***

Implementation title: Linux (Intel) NAGWare f95 (RedHat 6.x)
Precision: double

Product Code: FLLUX19D9
Mark: 19A

*** End of NAG Library implementation details ***

44

The structure of the NAG library

The library is divided into 12 chapters. Each covers a
different area of numerical methods and has its own
module, but the one library includes all chapters.

When using PWF Linux, the library and the modules are in standard places which the compiler
will search.

The NAG library is documented by paper manuals in
many PWFs, and by online documentation accessible
from the WWW page for this course.

N.B. This version of the NAG library never uses single precision reals, nor any sort of complex.

45

A non-trivial NAG example: matrix
determinant

A quick scan of the documentation produces the
slightly cryptic:

1 Purpose
F03AAF calculates the determinant of a real matrix
using an LU factorization with partial pivoting.

2 Specification
SUBROUTINE F03AAF(A, IA, N, DET, WKSPCE,

IFAIL)
INTEGER IA, N, IFAIL
real A(IA,*), DET, WKSPCE(*)

3 Description
This routine calculates the determinant of A using the
LU factorization with partial pivoting, PA = LU, where
P is a permutation matrix, L is lower triangular and U
is unit upper triangular. The determinant of A is the
product of the diagonal elements of L with the correct
sign determined by the row interchanges.

46

5 Parameters

1: A(IA,*) – real array Input/Output

Note: the second dimension of A must be at least max(1,N).

On entry: the n by n matrix A.
On exit: A is overwritten by the factors L and U, except that the

unit diagonal elements of U are not stored.

2: IA – INTEGER Input

On entry: the first dimension of the array A as declared in the

(sub)program from which F03AAF is called.

Constraint: IA≥max(1,N).

3: N – INTEGER Input

On entry: n, the order of the matrix A.
Constraint: N≥0.

4: DET – real Output

On exit: the determinant of A.

5: WKSPCE(*) – real array Workspace

Note: the dimension of WKSPCE must be at least max(1,N).

6: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1.

On exit: IFAIL = 0 unless the routine detects an error.

47

Interpretation

One would expect a subroutine which calculates a
determinant to need arguments including the array in
which the matrix is stored, the size of the matrix, and
a variable into which to place the answer. Here there
are just a couple extra.

Because the library is written in F77, which does
not support dynamic memory allocation, it is often
necessary to pass ‘workspace’ to a routine. This space
the routine will use for its own internal temporary
requirements. Hence WKSPCE(*).

Because F77 has no decent definition of what ‘single
precision’ and ‘double precision’ mean, all reals are
described as real. In this version, this means
real (kind(1.0d0)).

Finally, array dimensions of unknown size are denoted
by a ‘*’, not a ‘:’ – another F77ism.

48

An example

use nag_f77_f_chapter
real (kind(1.0d0)) :: m(3,3),d,wrk(2)
integer i,n,ifail

m(1,1)=2 ; m(1,2)=0
m(2,1)=0 ; m(2,2)=2

i=3 ; n=2 ; ifail=0

call f03aaf(m,i,n,d,wrk,ifail)

write(*,*)’Determinant is ’,d
end

49

Notes on F03AAF example

First the relevant NAG module is included, so that the
compiler can do some checking of arguments to the
subroutine.

Try swapping the m and i on the call to f03aaf and recompiling.

The array which will hold the matrix, the subroutine’s
workspace and the output variable are all declared.
The arrays could have been dynamic if we so chose.

The variables are initialised. The matrix is simply twice
the identity.

The routine is called, and the result written out. Notice
that the 2x2 matrix is held in a 3x3 array, so the array
size and the matrix size differ. This was done on a
whim.

The full NAG documentation offers example programs
too, albeit in F77.

Try finding the determinants of:„
1 2
3 4

«
and

„
1 −1
−1 1

«

50

Function maximisation

NAG provides routines for minimising functions, but
not maximising. If we wish to maximise xe−x for small
positive x, this is the same as minimising −xe−x.

A suitable NAG subroutine is E04ABF, whose
specification is:

SUBROUTINE E04ABF (FUNCT, E1, E2, A, B, MAXCAL,

X, F, IFAIL)

INTEGER MAXCAL, IFAIL

real E1, E2, A, B, X, F

EXTERNAL FUNCT

E1 and E2 define the accuracy required, and A and B
the range to search. MAXCAL is the maximum number
of trials, and IFAIL acts as before. X will be set to the
position of the minimum, and F to the function value
there.

This leaves FUNCT, which is the function to minimise,
and which we must supply.

51

Passing subroutines to subroutines

The NAG documentation for this reads:

1: FUNCT – SUBROUTINE, supplied by user External Procedure

This routine must be supplied by the user to calculate the value

of the function F (x) at any point x in [a, b]. It should be

tested separately before being used in conjunction with E04ABF.

Its specification is:

SUBROUTINE FUNCT(XC, FC)
real XC,FC

1: XC – real Input

On entry: the point at which the value of F is required.

2: FC – real Output

On exit: FC must be set to the value of the function F at the

current point x.

FUNCT must be declared as EXTERNAL in the (sub)program from

which E04ABF is called. Parameters denoted as Input must not

be changed by this procedure.

52

Writing for NAG

So NAG is asking us to supply a subroutine (not a
function) which takes two arguments, and returns the
value of the function it is evaluating in the second.

The references to EXTERNAL refer to the old F77 style of
function and subroutine declarations: we can continue
to use modules as before.

Of course this example is trivial analytically, the result
being a minimum of −1/e at x = 1. However, it
is good to start with examples whose results one can
check!

53

Function minimisation: E04ABF

module x_ex_mod
contains
subroutine x_ex(x,f)
real (kind(1.0d0))::x,f
f=-x*exp(-x)

end subroutine
end module

program minimize
use nag_f77_e_chapter
use x_ex_mod
integer ifail,maxit
real (kind(1.0d0))::e1,e2,a,b,x,f

e1=0; e2=0 ! Routine will use defaults
a=0.5 ; b=1.5 ; maxit=50 ; ifail=-1

call e04abf(x_ex,e1,e2,a,b,maxit,x,f,ifail)

if (ifail==0) then
write(*,*)’Minimum of ’,f,’ at ’,x

else
write(*,*)’Minimum not found ’,ifail

endif
end

54

Variables in modules

Sometimes it is useful to have variables (or constants)
declared once and used in different functions and
subroutines. One example would be:

module constants
real (kind(1.0d0)), parameter :: &

pi=3.141592653589793d0, &
h=6.62606891d-34

end module

module print_pi_mod
contains
subroutine print_pi
use constants
write(*,*)’pi is ’,pi

end subroutine
end module

program hbar
use constants
use print_pi_mod
write(*,*)’hbar is ’,h/(2*pi)
call print_pi

end

55

Integration

Numerical integration, often called quadrature, is a
common task: analytic integration can quickly become
impossible!

As an example we shall consider a situation where
the analytic result is (relatively) easy, and where the
numerical approach is hard as the range of integration
is infinite. However, NAG can cope with this.

The integral to consider is:

∫ ∞

−∞
e−λx2

dx

So that this can readily be evaluated for different
parameters λ, we shall pass λ via a module.

The NAG routine we shall use is D01AMF.

56

module lambda_mod
real (kind(1.0d0)) :: lambda

end module

module gauss_mod
contains
function gaussian(x)
use lambda_mod
real (kind(1.0d0)) :: gaussian, x
gaussian=exp(-lambda*x**2)

end function
end module

program integrate
use lambda_mod ; use gauss_mod
use nag_f77_d_chapter
integer, parameter :: lw=1000, liw=lw/4
integer i, inf, ifail, iwrk(liw)
real (kind(1.0d0)) :: b, result, err, epsabs, &

epsrel, wrk(lw)
inf=2 ; ifail=1
epsabs=-1 ; epsrel=1d-8

do i=1,20
lambda=0.1d0*i
call d01amf(gaussian,b,inf,epsabs,epsrel, &

result,err,wrk,lw,iwrk,liw,ifail)
write(*,*) lambda,result

end do
end

57

File I/O

Writing directly to a file is convenient when the output
is too much to fit on the screen! This can be achieved
thus:

integer i
open(20,file=’cubes.dat’)
do i=1,100
write(20,10)i,i*i,i**3

enddo
close(20)

10 format(i6,i8,i10)
end

The open statement creates a file called ‘cubes.dat’ and associates it with I/O unit number
20. This statement must come before the first use of that unit number in a write statement.

The first * in the write statement is now revealed to be the unit number. The close is good
practice, and should follow the last use of that I/O unit. The end statement should also close
any units still open. More details are given at the end of these notes.

58

When it all goes wrong

Programs inevitably have bugs, arising from a variety
of causes.

• Syntax of F90 misunderstood

• Details of library call misunderstood

• Brain forgot what it did a few lines back

• Fingers improvised

It is therefore essential to test programs thoroughly on
data for which the correct results are known: not all
bugs cause instant crashes!

59

Debugging by write statements

The most basic form of debugging, yet quite effective,
is placing extra write statements in the code. These
can be used either to show how far a program has got
before crashing:

write(*,*)’Third checkpoint reached’

or to check what values variables are taking, particularly
before evaluating a complex expression.

write(*,*)’x=’,x
y=1.0/exp(x*x)

N.B. The above will fail for quite modest values of x.

60

Run-time checks

real x(2,10)
integer i
do i=1,1000
x(1,i)=i
x(2,i)=i*i

enddo
...
end

This program writes beyond the end of an array:
x(1,11) does not exist. The compiled code does
not check every array reference to ensure that it is in
the declared bounds: doing so would slow the code
down. Most compilers can be told to add the checks
to the code by compiling with the extra option ‘-C’.

$ f95 -o bug bounds.f90
$./bug
Segmentation fault
$ f95 -C -o bug bounds.f90
$./bug
Subscript 2 of X (value 11) is out of range (1:10)
Program terminated by fatal error
Abort

61

Debuggers

An alternative approach is to use a debugger. This
can be much more versatile than the above methods,
and the following only scratches the surface of what is
possible.

Firstly one must compile the code with the ‘-g90’
flag. This causes extra information to be placed in the
executable file about variable names and source line
numbers.

$ f95 -o bug -g90 bounds.f90

Then one starts the debugger, specifying which
program one wishes to debug. The debugger used
here is called ‘dbx90’.

$ dbx90 bug

Finally, one asks the debugger to run the program:

(dbx90) run

62

dbx90

(dbx90) run
Program received signal SIGSEGV, Segmentation fault.
(dbx90) where

$MAIN$(argc, argv) at line 5 in "bounds.f90"
[C] ??() in "memory"
(dbx90) list 5,5
5 x(1,i)=i
(dbx90) print i
I = 133
(dbx90) whatis x
REAL::X(2,10)
(dbx90) quit

So using a debugger one can make simple enquiries
about the value of variables and how they were
declared.

63

Cores

When a program crashes, it often produces a file called
‘core’ in the directory it was running in. This file can
be very large: it contains a snapshot of the whole of
that program’s memory when the crash occurred. The
creation of such files can be turned off with the UNIX
command
ulimit -c 0
and on with the command
ulimit -c unlimited

There is a use for these files. Provided that the
program was compiled with the -g option, a debugger
should be able to read the core file and show where
the program was and what values variables had at the
time of the crash. Most debuggers can be told to read
such files by specifying ‘core’ after the program name
on the command line. dbx90 will read in any core file
automatically.

Core files can also do nasty things to one’s quota if
not removed!

64

The Good Style Guide

Most of the examples given are not particularly good:
the requirement to fit on one overhead is rather
constraining. Good advice would include:

• Do use implict none.
• Use comments liberally.
• Indent structures neatly
• Use names which make sense.

And remember: however good it looks, always test it.

A good program starts with comments describing what it does. Further comments describe
what the variables declared will do (unless it is very obvious). Likewise any function or
subroutine, for which describing precisely what input variables are required and what output is
given is very important.

Calling variables ‘a’, ‘b’ and ‘c’ is generally much less helpful than ‘energy’, ‘charge’,
‘electron mass’ etc.

65

66

Exercises

These exercises are not meant to be prescriptive. They are merely intended
to stimulate ideas and to save you from discussing the weather with the
demonstrators. They range from the very basic to a level a little beyond
what is required to complete this Part II course successfully. Those parts
which are certainly beyond what is required are indented from the left and
right.

The Basics

Try creating the two-line program on page 5 and compiling it, following the
instructions there. Note that the quote mark used at each end of the text
’Hello, world.’ is that produced by the key close to the right hand shift
key, and is not a double-quote.

Use the UNIX ls command to see that the executable file hello does indeed
appear alongside the source file hello.f90 once you have successfully run
the compiler. Use the -l option to ls to see how much bigger the executable
is than the original source. Do not attempt to read the executable using
the UNIX cat command: if you must be curious, use less instead. (Using
cat will damage little apart from to your nerves and may cause you to need
to kill the window in which you typed the command.)

Try creating a few more lines of output by adding some more write(*,*)
commands to the program. Notice that write(*,*) with no text following
it is valid and produces a blank line.

Type in the six line program on page 6. Lines three and five are identical.
Can you persuade your editor to copy line three, rather than type it twice?

67

This time there are no instructions on what to call the source file, nor the
executable, nor is the compile command explicitly given. But it should be
possible to work something out from the previous example.

Try changing any of lines two to five and see if your changes produce the
expected results. Do remember that after changing the source, you must
save it and recompile if you want to run the new version of the program,
rather than the old! Until you save it, the source file in your directory
will be unchanged, and until you recreate the executable by recompiling
the new source file, the old executable will remain and can be run as many
times as you please. Also remember that pressing the ‘up’ cursor key will
recall your last commands, so you need not keep on typing the compile
command: pressing ↑ a couple of times should usually find one, which can
then be edited using the left and right cursor keys if necessary.

Look at the program on page 7, and try changing the program you have just
been working on to demonstrate some of the extra features of this longer
code. Ensure you understand that 10/4 = 2. Verify that 3**2, 3**3 and
3**4 are what you expect. Is 3**30 what you expect? Check using a
calculator. (No calculator? Type ‘xcalc &’ at a UNIX prompt, and use
the mouse to click on 3, y^x, 3, 0, =.) You have just discovered that
the range of integers is somewhat finite. In fact, the range is −231 ≤ x ≤
231 − 1.

The example programs are beginning to get longer. Rather than typing
them all in, one can either download them from the course WWW pages,
or copy them from the shared filespace on the PWF using the UNIX
cp command. The UNIX environment variable $PHYTEACH has been set
up to point to this, which enables one to view this directory by typing
ls $PHYTEACH. Similarly, to copy an example from a directory there to
your current directory, a command such as

cp $PHYTEACH/examples/quadratic.f90 .

68

would suffice. Alternatively, one can try using cd to change to this directory
cd $PHYTEACH, have a look around, using less to inspect files, but without
trying to compile anything directly here, as you cannot write the executable
into this directory. Use

cp quadratic.f90 ~

to copy a file back to your home directory (both $HOME and ∼ are ways of
specifying your home directory), and then simply typing cd on its own will
take you back to your home directory once more.

Copy (or type in) the example quadratic solver on page 8. Compile and
run it. Test it on a few simple examples, such as:

x
2 − 1 = 0

2x
2

+ 3x− 10 = 0

x
2 − 2 = 0

x
2

+ 1 = 0

x + 1 = 0

Notice that you do not need to recompile each time you wish to run the
program.

It should fail on the last two examples. Why?

Look at page 10. Can you work out how to insert this code fragment into
the program so that it fails more gracefully when there are no real roots?
Try it.

Can you work out something to add so that it deals correctly with the case
of the coefficient of x2 being zero?

69

Finally, look at the example of repeated execution on page 12. Type
in and run this short program. Try changing the length of the loop by
replacing the ‘1,20’ by ‘1,1’ or ‘1,200’. Try ‘1,0’: what happened? Try
1,20000. Recall that in UNIX pressing the control key (marked Ctrl) and
‘C’ simultaneously should stop a runaway job. Curse gently that although
the job should/will stop immediately, several hundred lines of output may
be buffered up between it and your terminal: a job can easily get some way
ahead of the point which your terminal displays if the output is arriving
particularly rapidly.

Try ‘1,1300’: what is happening after i=1290? (Hint: 12913 > 231 − 1)
Try the suggestions for neater output on page 13. What happens between
i=215 and i=216 now? At i=317? At i=465?

Congratulations: you have survived the basic examples. Remember that
you should take frequent breaks when using computers extensively in order
to avoid RSI, eye-strain, etc., and then move on to the next section.

Simple programs

Look at the simple code for factorisation on page 15. Try compiling it and
running it. Which of 1 234 567, 1 021, 8 388 607 and 524 287 are prime?
Test it also on some smaller numbers where you know the correct answer!

What is the largest number which can be tested with this program?

Can you modify the code so that it prints all factors of the number input?

Why is testing up to
√

p rather than p (still) sufficient?

What happens if one tries to write sqrt p=sqrt(p)?

The program on the following page tests all odd numbers less than
√

p,
rather than all numbers less than p. It is thus twice as fast, and a

70

demonstration of using a do loop with an increment other than one. Notice
that the ‘slow’ program can factorise the largest number it can deal with in
under a second, so the speed enhancement is hardly necessary.

Data types

Data types may appear to be tedious, but their misuse is a cause of many
bugs. Look at the example on page 22 and ensure you understand it. The
two kinds of real used, single and double precision, correspond to the two
kinds of real that most modern CPUs can deal with automatically.

What is (probably) wrong with the following programs?

program pi_bug
integer, parameter :: dp=kind(1.0d0)
real (dp), parameter :: pi=3.14159265358979

write(*,*)pi
end

and

program sqrt2_bug
integer, parameter :: dp=kind(1.0d0)
real (dp) :: sqrt2

sqrt2=sqrt(2)

write(*,*)sqrt2
end

Notice that one of these examples (which?) compiles and runs, but probably
does not do what one might naively expect.

71

What does the following program do, and why?

program equality
real a,b
integer i,j

i=123456789
j=i+1

a=i
b=j

if (i==j) write(*,*)’i==j’
if (a==b) write(*,*)’a==b’

end

Which of the following expressions would, according to Fortran, be zero at
the end of the above program?

a-i
b-j
a-123456789
a-123456789.
a-123456789d0
a-real(i)
a-real(i,kind(1.0d0))

In the last expression, real(i,kind(1.0d0)) converts its argument directly
to a double-precision real, rather than the single precision that real(i)
produces.

72

Declarations

Look at the example of the variable salery being automatically declared
on page 25. Convince yourself that it really is better if a compiler spots
these typos rather than accepting them, and therefore that using implicit
none at the beginning of a program is a very good thing.

For the record, neither C nor C++ provide any mechanism for such
automatic declarations, whereas languages like Basic and Perl use them
almost exclusively.

Arrays

An array can be a very convenient way of storing large amounts of data.
A two-dimensional array could be used to store atmospheric temperature
or pressure at ground level on a 10km grid covering the UK. A more
complicated requirement would be to store wind velocity on a 3D grid. This
would require a four-dimensional array, as the velocity itself is a vector.

Try rewriting the simple program on page 12 so that one loop fills an array
with i, i*i and i**3, and a second loop writes out the contents of the
array.

Look at the example of dynamic arrays on page 31. Can you change the
program from the above paragraph to prompt for a maximum value for i
and to declare an array of the appropriate size? Remember not to deallocate
an array before you have finished using it!

More Simple Programs

Herewith some simple programs with no subroutines, functions or libraries.

73

Look at Eratosthenes’ sieve on page 34. Eratosthenes was a Greek
mathematician who lived in the third century BC, and invented the well-
known method for finding prime numbers. The method is to cross out all
multiples of 2 except 2, all of 3 except 3, all of 4 except 4, etc. The numbers
not struck out are prime.

The program creates the array primes and sets all elements to one.
Elements are then struck out by setting them to zero. Finally, the elements
left are printed.

Try running it for numbers up to about 100 000. You will soon see that
the calculation time is almost instantaneous, but the time to write out
the answer is quite long! Indeed, you may need to recall that pressing the
control key (marked ‘Ctrl’) and ‘C’ together can be useful for aborting such
output, although the effect will not be immediate.

One could simply print the highest prime found, by making the final loop

do i=prime_max,2,-1
if (primes(i)==1) then

write(*,*)i
stop

endif
enddo

This is now a program which potentially takes more than an instant to run,
and which is not delayed by writing to the screen. One can find how long
it takes by using the UNIX time command:

bash$ f95 -o sieve eratosthenes_largest.f90
bash$ time ./sieve
Input largest number for search

74

10000
9973

0.00user 0.00system 0:02.16elapsed 0%CPU (...)k
0inputs+0outputs (128major+36minor)pagefaults 0swaps

That tells us that the program ran for 2.16 seconds of ‘wall-clock’ time, and
consumed 0.00s of CPU (user) time. The difference is the time it took me
to enter the number ‘10000’.

However, entering a million makes the user time about 0.87s, ten million
takes 10.6s, and one hundred million causes the program to run out of
memory (at least on the machine I was testing this on). Even ten million
will require forty million bytes (40MB) to hold the array primes, which is
becoming somewhat large, and antisocial on a multiuser machine!

The next program to examine is that to calculate π on page 35. Set trials
to 1000, and run the program a few times. Notice that the answer varies:
different random sequences are used each time. If you run the program
several times in very quick succession (hint: either use the up arrow key to
recall the previous command rapidly, or make use of the ‘;’ character which
separates multiple UNIX commands on the same line, just like FORTRAN,
so ‘./pi ; ./pi ; ./pi’ is valid) it gives the same answer each time. The
time of day is being used to set the initial value produced by the random
number generator. This is not good, but getting genuinely random numbers
from a computer can be hard.

Alter the code so that it prompts for the number of trials. Notice that
although the estimates for π get better with increasing numbers of trials,
they do so rather slowly. A million trials get three figures fairly reliably,
and ten million four figures.

Notice too that although the code becomes rather slow when several million
trials are requested, the memory use stays constant and tiny: there are no

75

large arrays here. The use of an integer for the loop counter restricts us to
about two thousand million trials, which would take around 10 minutes on
a fastish PC.

Some compilers produce code which gives the same ‘random’
sequence each time it is run. This can be very useful for debugging.
Though the default in Fortran is undefined, either behaviour can
be explicitly requested by setting the seed the generator uses. The
following code is usually good enough.

integer i(1)
i(1)=...
call random_seed(put=i)

sets the seed. Set i(1) to a constant for the same sequence each
time, or use

integer i,j(1)
call system_clock(i)
j(1)=i
call random_seed(put=j)

for a different sequence each time.
The potential problem with the above code is that the seed is not
necessarily an integer array of length one: some compilers may
require a longer integer array. The sort of seed a given compiler
uses can be determined using
call random seed(i)
which sets i (an integer) to the length of the array of integers which
constitutes a seed. It is almost always one, and certainly is for the
compiler used for this course. Completely correct code would be:

integer, allocatable :: seed(:)
integer i
call random_seed(i) ! Get size of seed array

76

allocate(seed(i))
! Next line if same sequence each time desired
seed=1
! Next two lines if different sequence each time desired
call system_clock(i)
seed=i
call random_seed(put=seed)
deallocate(seed)

The next example (on page 36) is given in a particularly trivial form: that
of working out what to do in the morning. However, (why) is

call random_number(x)
die=1+6*x

the correct code for setting die to a random integer between 1 and 6, thus
simulating the roll of a normal six-sided die?

The final example program in this section is that which calculates factorials
(see page 37). Why is n declared integer, but fact double precision real?
What is the largest number this program can cope with? Does the program
stop or produce wrong answers for larger inputs?

Structured Programming

So far our programs have had a very simple structure: just a single piece
of code, with, perhaps, some loops or conditional statements. Now we shall
consider breaking our code into independent self-contained pieces, and thus
introduce the concepts of functions and subroutines. First we consider
defining a function to calculate factorials, just like the previous example
program.

77

The example concerned is on page 38, and looks somewhat complex. Try
deleting the four lines:

module fact_mod
contains
end module
use fact_mod

and adding the line
real (kind(1.0d0)) :: factorial
immediately after the program test statement.

This reduces the program to something close to Fortran77 syntax, and it
will still compile and run.

The points to notice are that the name of the function is unique within
the program, and that within the function itself the function name is
declared just like any other variable, and has values assigned to it like any
other variable. The value of that variable when execution reaches the end
function statement, or when it reaches a return statement, is the value the
function returns. The current function returns one for all negative inputs.
If one wished it to return −1 to indicate the error, one could add

if (n<0) then
factorial=-1
return

endif

before (or after) the loop. Notice that the variables i and n in the function
are not the same as variables of the same name in the main program.

The addition of the module (the four lines which are potentially removeable)
serves an important purpose. It encourages the compiler to check that we

78

are calling our function correctly: that is we are passing it one integer value
and we expect a double precision value back. The NAG compiler used in
this course is quite good at checking itself when it is able, but many other
compilers do not unless the language requires them to do so. The module
also serves to declare the name factorial within the main program, so it
should not be (re)declared explicitly here anymore. It is good practice to
use modules.

Even the NAG compiler will fail to do argument checking if we chose
to split this program into two input files without using a module.
With the module, it is perfectly reasonable. Simply create two files,
the first containing the lines up to and including the end module
statement, the second containing the main program. Then compile
using:
$ f95 -c file1.f90
$ f95 -o myprog file2.f90 file1.o
Notice the first command will create two files, one called
fact mod.mod and one called file1.o. The first is required by
the use fact mod statement in the main program. It contains
information about the definition of the factorial function (i.e. that
it wants an integer and returns a double precision). The second
contains the actual factorial function in compiled binary form.

A subroutine is very like a function, except that it returns no value. It may,
however, modify any of the variables passed to it. It is usual practice to use
a function only if the routine is to return a single value and print nothing,
and to use a subroutine otherwise. A function thus restricted behaves very
much like all the other functions which one is used to: log, sin, etc.

Look at the example of using a subroutine on page 41. Consider that when
i and j are passed to the subroutine, actually the locations in memory
which hold i and j are passed. Thus the subroutine can modify them, by

79

storing new values there before it returns. However, as the contents of the
memory will be just a collection of binary bits, it is important to ensure
that one passes the correct type to the subroutine. If the subroutine is told
to expect a four-byte integer, and you have actually stored an eight-byte
double precision real at the address, the subroutine has no way of knowing
this, and strange things will occur. Correct use of modules will prevent
most of this chaos, as the compiler will notice and complain.

Libraries

The climax of this course, and most of the problems, is successfully calling
a library. This is the sane way to write code: break your task down into
general tasks most (all?) of which have been solved before, and call the
relevant routines. This you have already been doing to a large extent: if
you wish to evaluate sin(2.6) you write sin(2.6). You do not worry
about reducing 2.6 to the first quadrant and then looking up some exciting
polynomial or polynomial fraction which will usefully approximate the sine
function in this region: that is all done for you. The library functions
we shall consider now are more complex and comprehensive than sine, but
conceptually similar.

The first example on page 44 simply calls NAG’s identifaction routine. The
Fortran starts with a use statement, for modules are provided describing all
NAG routines. It then calls the subroutine a00aaf which asks the library
to identify itself. Unfortunately all NAG routines have these bizarrely
unmemorable names. Notice that as a00aaf takes no arguments, not even
brackets are needed after its name.

When compiling we must ask the compiler to look in the NAG library for
any functions or subroutines we have called and yet not provided code for
ourselves. This is done with the ‘-lnag’ on the end of the compile line. The
result should be roughly as shown: try it.

80

A more worth-while example is given starting on page 49. Finding a
determinant is actually quite hard: there are several simple algorithms
which are algebraically correct, but which do not cope well when executed
with the limited precision and range of a computer’s arithmetic. Such
problems rarely occur with small matrices, but do readily occur once the
matrix has even a few tens of rows and columns. The people at NAG will
have produced a solver which is both fairly robust and which gives an error
if it finds the problem too hard (rather than simply giving a wrong answer).

The NAG documentation talks about LU factorisation and partial pivoting.
It is not the purpose of this part of this course to explain or worry about
such techniques.

It then describes in detail what parameters should be passed to the routine,
and what it will return. Remember that when a matrix is passed to
a subroutine, all the subroutine is given is the address in memory at
which the first element of that matrix is stored. Thus it is necessary to
pass separately information about how large a matrix to expect. (Thus
‘traditional’ languages like C and Fortran77. More ‘modern’ languages,
such as C++ and Fortran90, are capable of passing a single complex object
such as an array complete with size and shape information. Unfortunately
the library which it has been decreed we shall use was written for Fortran77.
In some ways this is an advantage: the language is simpler, and no ‘magic’
is occurring behind one’s back.)

NAG’s library offers three choices of error detection, which are chosen by
setting the value ifail on entry. These are:
ifail=-1 print error message and continue
ifail=0 print error message and stop
ifail=1 continue
If you choose ifail to be other than zero, it is essential to check its value
after calling the NAG routine. Any value apart from zero at this point

81

means that some form of error occurred (i.e. on success the NAG routine
will reset it to zero).

The final examples

The most complex examples in this course, which certainly go as far as
you will need to solve any of the problems set, are those which call a
NAG routine which itself needs a user-defined function or subroutine as an
argument. The first example is on page 54, where we determine numerically
the maximum of the function xe−x.

Careful reading of the NAG documentation is always required to ensure
that the function or subroutine provided by the user does precisely what
the library requires. In this case the subroutine is easily written. The NAG
routine itself has a large number of arguments. This is not unreasonable:
when performing numerical minimisation, integration, root finding, etc.,
one often wishes to trade off speed against accuracy, and NAG therefore
provides mechanisms for specifying the required accuracy. For a problem
this simple, using the defaults is quite reasonable. NAG also expects a
hint as to where to look for the minimum. Again, this is very useful: our
subroutine would fail if called to evaluate the function at x = −10000
(why?), but, by telling NAG to look for a minimum between 0.5 and 1.5
we get a guarantee that NAG will not ask for the function to be evaluated
outside of this range.

Try modifying the program to find that minimum of the sinc(x) function
(defined as sin(x)/x) which lies between 3 and 5. Try also calling your sinc
function at x = 0: what trap exists here? Notice that unlike the previous
example, this minimisation is rather hard if attempted algebraically.

As a prelude to the final NAG example, we consider one further use of
modules. So far a module has contained either a function or a subroutine,
and the module name and function / subroutine name must be distinct.

82

In fact a module may contain multiple functions and subroutines and also
variables (including parameters). Thus one can have a module containing
the value of π or h̄ and include it whenever one needs that constant. A
simple example is given on page 55. By using modules in this fashion we
can arrange that certain identically-named variables in the main program
and a subroutine (or in multiple functions / subroutines) are identical. This
can be very useful as we shall see in the final NAG example.

That final example is to evaluate numerically

I =

Z ∞

−∞
e
−λx2

dx

for values of λ from 0.1 to 2 in steps of 0.1.

NAG has a routine for doing integration over an infinite or semi-infinite
interval, at least for functions as well-behaved as this one, and, as usual, we
can specify the precision we require and we are required to provide some
workspace. However, NAG wishes to call a function of x only, and we wish
to define a function of λ and x. This is resolved by letting NAG vary x
in the obvious manner, and using a module to contain λ. By using this
module both in our main program and the function, λ is shared between
the two without the NAG routine knowing, or needing to know, anything
about it.

The analytic result of

I
2

= 2π

Z ∞

0
xe
−λx2

dx

= π/λ

83

is familiar. Change the program to print both the numerical result and the
result of evaluating directly

p
π/λ.

Debugging

Bugs are inevitable and unpleasant. Try experimenting with the three
debugging techniques mentioned starting at page 59.

Usually an error of ‘segmentation fault (or violation)’ or ‘sigsegv’ means that
an array bound has been exceeded, whereas a ‘floating point (or numeric or
arithmetic) exception’ or ‘sigfpe’ means that an impossible piece of floating
point arithmetic (e.g. division by zero, square root of negative number,
exponentiation of something large) has been attempted.

Change the gaussian integration routine so that the function reads
gaussian=1/exp(lambda*x**2)
and investigate the crash which will follow.

For instance, adding:
write(*,*)lambda,x
produces the output:

0.1000000000000000 1.0000000000000000
0.1000000000000000 -1.0000000000000000
0.1000000000000000 2.3306516868994831E+02

*** Arithmetic exception: - aborting
Aborted (core dumped)

In other words, NAG requested function evaluations at x = 1, x = −1
and x = 233.065. Calculating exp(5431) is (far) beyond the permitted
range of about 10308.

NAG’s compiler also has the useful option ‘-gline’ which causes the
following output:

84

*** Arithmetic exception: - aborting
file: gaussian_bug.f90, line 10
Aborted (core dumped)

Using the debugger results in the following:

$ f95 -g90 -o bug2 gaussian_bug.f90 -lnag
$ dbx90 bug2
NAGWare dbx90 Version 4.1(15)
Copyright 1995-2000 The Numerical Algorithms Group Ltd.
(dbx90) run

Program received signal SIGFPE, Arithmetic exception.
(dbx90) where
[C] __exp(x) at line 45 in "w_exp.c"

GAUSS_MOD‘GAUSSIAN(GAUSS_MOD‘GAUSSIAN‘X) at line 10
in "gaussian_bug.f90"

[C] d01amz_()
[C] d01amv_()
[C] d01amf_()

INTEGRATE(argc, argv) at line 26 in "gaussian_bug.f90"
[C] __libc_start_main(...) at line 129 in "libc-start.c"
(dbx90) up
Current scope is GAUSS_MOD‘GAUSSIAN
(dbx90) list 10,10
10 gaussian=1/exp(lambda*x**2)
(dbx90) print x
X = 233.06516868994831
(dbx90) print lambda
LAMBDA = 0.10000000000000001
(dbx90) print lambda*x*x
LAMBDA*X*X = 5431.9372856474065

85

(dbx90) quit
$

This tells us that the program died whilst attempting the numerically
impossible

Program received signal SIGFPE, Arithmetic exception.

and that this was in a routine called exp for which there is no source
available. Typing where shows the current call stack. Our program (main)
called d01amf (no surprise there: we did call the NAG routine d01amf).
It then called d01amv and d01amz before calling GAUSS MOD MPG̀AUSSIAN,
which is our gaussian function with its name embellished to show that it
is contained in the gauss mod module. This called exp and the program
died.

By typing up we ask the debugger to move its attention one step up this
stack, that is from the exp function to our gaussian function. We can now
list the line which called exp, and print the values of x and lambda, or even
simple expressions involving these (however note ** for exponentiation is
not understood by the debugger).

Note that not all bugs cause programs to fail, or even to produce obviously
wrong answers.

86

The format statement

An incomplete list of options to the format statement for reference.

ix integer, at most x characters
ix.y integer, at most x characters

and at least y (padded with leading zeros)
fx.y floating point, at most x characters and

precisely y characters after the decimal point
ex.y exponential, at most x characters and

precisely y characters after the decimal point
dx.y ditto, but use ‘D’ not ‘E’ to represent exponent
a ASCII string
ax ASCII string, at most x characters
gx.y general – treated as fx.y for numbers close to one,

as ex.y otherwise, and as ix if used on an integer
’any text’ literal text

Complex numbers are printed by using two e, f, g or d descriptors.

Any of the above may be preceded by a repeat count.

Examples:

complex c
write(*,10) c

10 format(f10.4,’ + ’,f10.4,’i’)

integer i
write(*,10)i,i*i,i**3

10 format(3i8)

integer i
write(*,10)’Number ’,i,’ your time is up.’

10 format(a,i3,a)

87

The open statement

An incomplete list of options to the open statement for reference.

open(x, file=cc, status=stat, action=act)

x unit number. Integer expression.
cc file name. Character variable or constant.
stat one of: ’OLD’ (file must exist)

’NEW’ (file must not exist)
’REPLACE’ (file will be overwritten)

status=stat is optional.
act one of: ’READ’ (writes will not be permitted)

’WRITE’ (reads will not be permitted)
’READWRITE’ (no restrictions)

action=act is optional.

Unit numbers 5 and 6 should not be used: 5 often corresponds to reading from the terminal
(read(*,*)), 6 to writing to it (write(*,*)).

Simple examples:

open(10,file=’output.dat’)
open(50,file=’more.data’,status=’REPLACE’)

Complicated example (ignore if you wish):

character(len=40) name
integer i
i=20

write(name,10)i
10 format(’output’,i3.3,’.dat’) ! OK for 0-999 except 5 and 6

open(i,file=name,status=’REPLACE’)

(You have not formally been introduced to the character type, nor using write to fill it)

88

The read statement

The following shows how to read a file of unknown length, and introduces a few new features.
The file is assumed to contain two columns of reals, and will be stored in the array x.

integer i,len
real dummy
real, allocatable :: x(:,:)

open(15,file=’input.dat’,status=’OLD’)
len=0 ! Number of lines read succesfully
do

read(15,*,end=20,err=30) dummy
len=len+1

enddo

20 rewind(15)
allocate (x(2,len))
do i=1,len

read(15,*,err=30) x(1,i),x(2,i)
enddo
close(15)
write(*,*)len,’ data elements read’
stop

30 write(*,*)’I/O error occurred’
end

The first loop reads in the file, looking for one data item on each line, which it discards by
storing it in the variable dummy, which is overwritten on every cycle of the loop. The end=
option of read tells the program to jump to label 20 when it reaches the end of the input file.

The rewind statement tells the program to go back to the beginning of the file for that unit
number. Originally files would have been stored on tapes, hence the concept of rewind.

Now the number of lines is known, one can allocate an array to hold the data, and read in
precisely the correct number of items. In the case that a line does not start with two items
which can be interpreted as reals, an error will occur and the program will jump to label 30.

89

F90 Functions

An incomplete list of F90 functions for reference.

Notation: i – integer, r – real, d – double precision, c – complex, z – double precision
complex.
Unless otherwise stated, functions return the same type and kind as their argument.

abs(irdcz) Absolute value
acos(rdcz) Arccosine
aimag(cz) Imaginary part
aint(rd) Truncate to integer
anint(rd) Nearest integer
asin(rdcz) Arcsine
atan(rdcz) Arctangent
atan2(rd,rd) atan2(x,y) is the arctangent of x/y
ceiling(rd) Ceiling
cmplx(ird,ird) a + ib as type c
cmplx(ird,ird,kind(1d0)) a + ib as type z
conjg(cz) Complex conjugate
cos(rdcz) Cosine
cosh(rdcz) Hyperbolic cosine
exp(rdcz) Exponential function
floor(rd) Floor
int(rd) Convert to integer type by truncation
log(rdcz) Natural logarithm
log10(rdcz) Base 10 logarithm
mod(i,i) mod(a,b) is a modulo b
nint(rd) Convert to nearest integer
real(idcz) Convert to real (r)
real(ircz,kind(1d0)) Convert to real (d)
sin(rdcz) Sine
sinh(rdc) Hyperbolic sine
sqrt(rdcz) Square root
tan(rdcz) Tangent
tanh(rdcz) Hyperbolic tangent

See also page 33 for functions taking arrays as arguments.

90

Reading F77

It is useful to be able to read Fortran77, and here are described those features of F77 which
are best not used in F95, even though they are still valid syntax.

Fixed Form Source

The most striking and archaic feature of F77 is its fixed form source. A comment is
indicated by the letter ‘C’ in the first column of a line, the first five columns may contain
only statement labels, the sixth column contains the continuation mark (if column six does
not contain a space, then this line should be considered a continuation of the previous one),
and columns seven to seventy-two contain the ‘real’ statements. This made sense in a world
of punched cards, but not today.

Conditionals

The conditional operators <, <=, ==, >=, > and /= are .lt., .le., .eq., .ge., .gt.
and .ne. respectively. The characters < and > simply do not occur in F77.

Labels everywhere

We have used statement labels for format statements only. In F77 they were used more
widely. Indeed, the only do loop was of the form

do 10, i=1,20
write(*,*)i,i*i

10 continue

The continue statement does nothing, except act as a placeholder for the label. The label
specified immediately after the do is the last line within the body of the loop. Sometimes
one will see the (bad) style of:

do 15, i=1,10
do 15, j=1,10

15 a(i,j)=0.0

91

F77 also makes use of the goto statement, which causes execution to jump immediately
to the label given.

20 write(*,*)’Input a positive number’
read(*,*) i
if (i.lt.0) goto 20

The goto statement is considered ugly and untidy. It is almost always better to use a do,
a multi-line if or a select statement instead.

double precision

Double precision variables could be declared as
double precision x
equivalent to the F90 declaration
real (kind(1.d0)) :: x

Officially this was the only way of specifying double precision, and double precision complex
simply did not exist! Most compilers accepted real*8 as an alternate way of declaring
double precision reals, and complex*16 for the complex variety.

parameter statement

The declaration
integer i
parameter (i=5)
is equivalent to the F90 declaration
integer, parameter :: i=5

common

The common statement allows specified variables to be shared by subroutines without being
explicitly passed. It does nothing useful that modules do not do in a less error-prone
fashion.

92

F95 Omissions

Many features of F95 have been intentionally omitted from this course. Time is limited,
and the features covered should be quite sufficient for the purposes of this course. However,
should you know of other features, you are free to use them.

So that a fair impression of the language is given, here is a list of the main omissions:

• Pointers
• User-defined data types
• Optional arguments to functions / subroutines
• intent attribute for arguments
• Private members of modules
• Array subobjects (automatic array slicing)
• Unformatted I/O (very necessary for large files)
• Operator overloading
• Recursion
• Bit manipulation functions
• String handling

93

F95 Syntax summary

A brief and rather incomplete summary of those bits of Fortran syntax covered in these
notes. This is really intended for those already familiar with a programming language. If
you have never programmed before, do not worry if these pages make no sense whatsoever.

Notation: stmnt one F90 statement, stmnts zero or more F90 statements, expr numeric
expression, const expression which can be evaluated at compile time, cond condition (logical
expression), [] enclose optional constructions.

General Structure

module module name
contains
variable declarations
function and subroutine declarations
end module

program
use statements
implicit none
variable declarations
stmnts
end

There may be zero or multiple modules.

The program statement may carry a name, and the end may be written as
end program program name

Names (of modules, functions and variables) can be up to 31 characters, case insensitive,
first character alphabetic, others alphanumeric or underscore.

94

Variable declarations

implicit none should precede definitions!

Scalars

real vars
complex vars
integer vars
real [([kind=]int)] [, parameter] :: var[=const][,var. . .]
complex [([kind=]int)] [, parameter] :: var[=const][,var. . .]
integer[, parameter] :: var[=const][,var. . .]

The first three are in the old F77 style, the last three in the F90 style. If parameter is
specified, the variable should be initialised immediately by being defined as var=const.

Fixed size arrays

As above, but each variable specified as
var([lower:]upper[,[lower:]upper,. . .])
Up to seven dimensions are permitted. If a lower bound for a dimension is omitted, one is
assumed.

Allocatable arrays

As above, but the modifier allocatable must be present, and just a colon with no lower
or upper bound is given for each dimension. E.g., for a 2D array:

integer, allocatable :: grid(:,:)

Such an array can be the subject of an allocate statement, and, if allocated, of a
deallocate statement.

Conditional Execution

If, short form

95

if (cond) stmnt

If, long form

if (cond) then
stmnts
[else if (cond) then
stmnts]
[else
stmnts]
end if

Any number of else if clauses may occur.

Select

select case (expr)
case (const[:const][,const])
stmnts
[case default
stmnts]
end select

Where const:const denotes a range, and commas separate multiple single values or ranges.
The range may be open-ended, such as ‘:5’ for anything less than or equal to five.

Loops

do var=expr1,expr2[,expr3]
[stmnts]
[if (cond) exit]
[stmnts]
enddo

var must be defined as an integer variable, and will take the value expr1 for the first
iteration of the loop, and have expr3 added to it at the end of each iteration. If expr3
is omitted, it is taken to be one. The total number of iterations is floor(1+(expr2-
expr1)/expr3), or zero if this is negative. The expressions must be integer, and will be

96

evaluated just once on entry to the loop. No attempt may be made to change the value of
var within the loop.

do
[stmnts]
if (cond) exit
[stmnts]
enddo

An infinite loop. Some form of exit is effectively required.

97

Bibliography

The following resources may be helpful, and were used in preparing this course.

FORTRAN 90/95 explained, Metcalf and Reid, Oxford Science Publications, £18.
Fortran 90 for Scientists and Engineers, Hahn, Arnold, £23.

Metcalf and Reid covers the language only, Hahn also includes some background on
numerical methods. As neither is cheap, you may prefer to seek out library copies.

(Fortran 90 and Fortran 95 are almost indistinguishable: do not worry if a book mentions
F90 only).

The course WWW site, found from http://www.phy.cam.ac.uk/, or, more directly, at
http://www.mrao.cam.ac.uk/teaching/comp phy/, has some pointers to other useful
F90 resources too, as well as an errata for this document, should one be needed.

98

!, 17
**, 7
:, 31
::, 21
;, 22
=, 6, 11
==, 11
&, 17

algebra, 8
allocatable, 31
allocate, 31
ANSI, 3
antisocial, 75
argument, 8, 18
argument passing, 42
array

bounds, 29, 61
functions, 33
operations, 32

arrays, 27–29, 73
dynamic, 31
static, 31

assignment, 6, 11

Bell Labs, 3

calculator, 68
call, 42
case, 36
case sensitivity, 7
close, 58
comments, 17, 65
common, 92
comparison, 11, 91
complex, 19, 23
complex, 23
conditions, 10
constants, 9, 18, 20
contains, 38
continuation line, 17
continue, 91
conversions, 24
core files, 64

dbx90, 62, 64, 85
deallocate, 31
debugger, 62, 85
debugging, 59–64, 84
declarations, 17, 18, 73

99

do, 12, 14, 16, 34, 91
double precision, 92

elements, 29
end, 5, 31, 38, 58
enddo, 12
endif, 10
Eratosthenes, 34, 74
examples, copying, 68
executable, 67
exit, 14
exponents, 20
expression, 18
external, 53

f95, 5
-g90, 62, 85
-gline, 84
-lnag, 44, 80

factorials, 37, 38
factorisation, 15
file I/O, 58, 88, 89
format, 13, 70, 87
Fortran 77, 91
function, 8, 18

function, 38
functions, 39, 78

list of, 90

goto, 92

IBM, 3
if, 10, 34
ifail, 81
implicit declarations, 25
implicit loops, 32
implicit none, 26, 65
indentation, 10, 65
indices, 29, 30
input, 8
integer, 19
integer, 6
integers, 7

kind, 21

label, 13, 89, 91
libraries, 43, 80
linker, 43
loops, 12, 14, 32

memory usage, 30

100

mod, 15
module, 38
modules, 39, 79

variables in, 55

NAG compiler, 79
NAG library, 43–54

documentation, 45
numerical integration, 56

omissions, 93
open, 58, 88
operator, 18

parameter, 9, 92
π, 35
portability, 2
precidence, 8
precision, 19, 21, 22, 72
print, 5
program, 38

random numbers, 35, 75
random number, 35
random seed, 76
range, 19, 20, 70

read, 8, 89
real, 19
real, 8, 15, 72
real*8, 92
rewind, 89
run-time checks, 61

scalar, 27
select case, 36
selected real kind, 21
SIGFPE, 84, 86
SIGSEGV, 84
speed, 71, 75
sqrt, 8, 15, 23, 71
stop, 10
stride, 34
subroutine, 41
subroutines, 42, 52, 79
subscripts, 29
supercomputers, 4

test, 53, 65, 84
time, 74
type conversions, 24

101

ulimit, 64
unit number, 58
use, 38

variable, 18
variables, 6, 7, 65
vectors, 27

write, 58, 88

102

